"In mathematics, the Euclidean algorithm, or Euclid's algorithm, is a method for computing the greatest common divisor (GCD) of two (usually positive) integers, also known as the greatest common factor (GCF) or highest common factor (HCF). ... 
The GCD of two positive integers is the largest integer that divides both of them without leaving a remainder (the GCD of two integers in general is defined in a more subtle way).
In its simplest form, Euclid's algorithm starts with a pair of positive integers, and forms a new pair that consists of the smaller number and the difference between the larger and smaller numbers. The process repeats until the numbers in the pair are equal. That number then is the greatest common divisor of the original pair of integers.
The main principle is that the GCD does not change if the smaller number is subtracted from the larger number. ... Since the larger of the two numbers is reduced, repeating this process gives successively smaller numbers, so this repetition will necessarily stop sooner or later - when the numbers are equal (if the process is attempted once more, one of the numbers will become 0)." [Euclidean algorithm. Wikipedia]
The flowchart example "Euclidean algorithm" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Mathematics solution from the Science and Education area of ConceptDraw Solution Park.
                        
                                                
                    The GCD of two positive integers is the largest integer that divides both of them without leaving a remainder (the GCD of two integers in general is defined in a more subtle way).
In its simplest form, Euclid's algorithm starts with a pair of positive integers, and forms a new pair that consists of the smaller number and the difference between the larger and smaller numbers. The process repeats until the numbers in the pair are equal. That number then is the greatest common divisor of the original pair of integers.
The main principle is that the GCD does not change if the smaller number is subtracted from the larger number. ... Since the larger of the two numbers is reduced, repeating this process gives successively smaller numbers, so this repetition will necessarily stop sooner or later - when the numbers are equal (if the process is attempted once more, one of the numbers will become 0)." [Euclidean algorithm. Wikipedia]
The flowchart example "Euclidean algorithm" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Mathematics solution from the Science and Education area of ConceptDraw Solution Park.
-  Euclidean algorithm  -  Flowchart  | Method Of  Gcd Flow Chart 
-  Flow Chart  Of  Euclid Algorithms 
- Basic  Flowchart  Symbols and Meaning |  Euclidean algorithm  ...
- Solving quadratic equation  algorithm  -  Flowchart  | Basic  Flowchart  ...
- Solving quadratic equation  algorithm  -  Flowchart  |  Euclidean  ...
-  Algorithm Flowchart  Diagram
-  Euclidean algorithm  -  Flowchart  | Basic  Flowchart  Symbols and ...
-  Euclidean algorithm  -  Flowchart  | Solving quadratic equation ...
- Solving quadratic equation  algorithm  -  Flowchart 
-  Euclidean algorithm  -  Flowchart  | Solving quadratic equation ...
- Basic  Flowchart  Symbols and Meaning | Basic Diagramming | Basic ...
- Sample Project  Flowchart .  Flowchart  Examples |  Euclidean  ...
-  Euclidean algorithm  -  Flowchart  |  Flowchart  Hcf Of Two Numbers By ...
-  Euclidean algorithm  -  Flowchart  |  Flow Chart  Showing  Euclids  Lemma
-  Flowchart Algorithm  Examples
-  Euclidean algorithm  -  Flowchart  |  Flowchart  Of Hcf Program
-  Euclidean algorithm  -  Flowchart  | Elaborate  Euclid  Division Lemma
- Scientific Symbols Chart |  Euclidean algorithm  -  Flowchart  ...
- Basic  Flowchart  Symbols and Meaning | Simple  Flow Chart  ...
-  Euclidean algorithm  -  Flowchart  |  Flow Chart  Of  Euclid  Division ...

 
                             
                             
                             
                            