Get Free Trial

Design elements - Fluid power valves

The vector stencils library "Fluid power valves" contains 93 symbols of pre-made hydraulic and pneumatic valves, including directional control valves, flow control valves, pressure control valves, and electrohydraulic and electropneumatic valves.
"Control valves are valves used to control conditions such as flow, pressure, temperature, and liquid level by fully or partially opening or closing in response to signals received from controllers that compare a "setpoint" to a "process variable" whose value is provided by sensors that monitor changes in such conditions.
The opening or closing of control valves is usually done automatically by electrical, hydraulic or pneumatic actuators. Positioners are used to control the opening or closing of the actuator based on electric, or pneumatic signals.
A control valve consists of three main parts in which each part exist in several types and designs: Valve's actuator, Valve's positioner, Valve's body.
" [Control valves. Wikipedia]
The shapes example "Design elements - Fluid power valves" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Mechanical Engineering solution from the Engineering area of ConceptDraw Solution Park. Read more
Fluid power valve symbols
Fluid power valve symbols, two-stage, pressure relief, valve, provision, remote control, two-port, two-position, valve, three-port, two-position, valve, restrictor valve, pressure relief, sequence valve, pressure reducing, regulator, valve, one-way restrictor, valve, free flow, one direction, variable restriction, flow, non-return, valve, gate-valve, four-port, two-position, valve, four-port, three-position, valve, flow divider, valve, flow control, valvel, series flow, flow control, valve, temperature compensated, flow control, valve, bypass flow control, five-port, two-position, valve, five-port, three-position, valve, electrically operated, pressure relief, valve, coupling, disconnected, self-sealing, quick release, mechanically operated valves, coupling, disconnected, self-sealing, quick release, coupling, connected, self-sealing, quick release, mechanically operated valves, coupling, connected, self-sealing, quick release, cartridge valve,
The vector stencils library "Valve assembly" contains 141 symbols of pressure and flow regulators, flow direction indicators, controls, and symbols to design flow paths of control valves.
Use these valve assembly shapes to design the engineering drawings of hydraulic and pneumatic valve assemblies in fluid power systems.
"Control valves are valves used to control conditions such as flow, pressure, temperature, and liquid level by fully or partially opening or closing in response to signals received from controllers that compare a "setpoint" to a "process variable" whose value is provided by sensors that monitor changes in such conditions.
The opening or closing of control valves is usually done automatically by electrical, hydraulic or pneumatic actuators. Positioners are used to control the opening or closing of the actuator based on electric, or pneumatic signals.
A control valve consists of three main parts in which each part exist in several types and designs: Valve's actuator, Valve's positioner, Valve's body.
" [Control valves. Wikipedia]
The shapes example "" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Mechanical Engineering solution from the Engineering area of ConceptDraw Solution Park. Read more
Valve assembly symbols
Valve assembly symbols, variable arrow, valve, two-position, ports, valve, two-position, five ports, valve, three-position, ports, valve, three-position, five ports, valve, four-position, ports, valve, four-position, five ports, two-port, flow path, two-port, closed, flow path, three-port, flow path, three-port, crossover, flow path, spring, variable spring, non-variable spring, shaft, rod, shaft, direction, rotation, rotary connection, line junction, roller, one-way trip, rod, restriction, fluid flow, pull, push, button, pneumatic, fluid flow, plunger, variable plunger, non-variable plunger, pilot-operated, pedal, treadle, over - center, manual override, manual operation, lever, latch, junction, crossing, indication, temperature, temperature control, hydraulic, fluid flow, four-port, tandem, flow path, four-port, semi-connected, flow path, four-port, open, flow path, four-port, flow path, four-port, crossover, flow path, four-port, crossed, flow path, four-port, closed, flow path, fluid energy, pneumatic, hydraulic, energy source, fluid energy, pneumatic, energy source, fluid energy, hydraulic, energy source, flow path, flexible line, five-port, flow path, five-port, crossover, flow path, five-port, closed, flow path, electric, electrical, functional element, electric rotor, electric linear, solenoid, dot, line, junction, detent, curved arrow, direction, rotation, closed path, closed port, box, flow path, arrow, flow path, direction, rectilinear motion, air exhaust port, air bleed, connection,

mechanical engineering, mechanical design software, mechanical drawing symbols, mechanical drawing software Mechanical Engineering

This solution extends ConceptDraw PRO v.9 mechanical drawing software (or later) with samples of mechanical drawing symbols, templates and libraries of design elements, for help when drafting mechanical engineering drawings, or parts, assembly, pneumatic, Read more
mechanical engineering, mechanical design software, mechanical drawing symbols, mechanical drawing software
Retract resistor check valve application: pneumatic cylinder, piston driven by Compressed air through 2 Retract resistor check valves.
"A check valve, clack valve, non-return valve or one-way valve is a valve that normally allows fluid (liquid or gas) to flow through it in only one direction.
Check valves are two-port valves, meaning they have two openings in the body, one for fluid to enter and the other for fluid to leave. There are various types of check valves used in a wide variety of applications. Check valves are often part of common household items. Although they are available in a wide range of sizes and costs, check valves generally are very small, simple, or inexpensive. Check valves work automatically and most are not controlled by a person or any external control; accordingly, most do not have any valve handle or stem. The bodies (external shells) of most check valves are made of plastic or metal.
An important concept in check valves is the cracking pressure which is the minimum upstream pressure at which the valve will operate. Typically the check valve is designed for and can therefore be specified for a specific cracking pressure.
Heart valves are essentially inlet and outlet check valves for the heart ventricles, since the ventricles act as pumps." [Check valve. Wikipedia]
This hydraulic schematic example was redrawn using ConceptDraw PRO diagramming and vector drawing software from the Wikimedia Commons file: Retract resistor check valve application.png.
[commons.wikimedia.org/wiki/File:Retract_resistor_check_valve_application.png]
The hydraulic engineering drawing example "Retract resistor check valve application" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Mechanical Engineering solution from the Engineering area of ConceptDraw Solution Park. Read more
Hydraulic schematic
Hydraulic schematic, restrictor valve, non-return, valve, double-acting, magnetic cylinder, dot, line, junction,
The vector stencils library "Valves and fittings" contains 104 symbols of valve components.
Use these icons for drawing industrial piping systems; process, vacuum, and fluids piping; hydraulics piping; air and gas piping; materials distribution; and liquid transfer systems.
"A valve is a device that regulates, directs or controls the flow of a fluid (gases, liquids, fluidized solids, or slurries) by opening, closing, or partially obstructing various passageways. Valves are technically valves fittings, but are usually discussed as a separate category. In an open valve, fluid flows in a direction from higher pressure to lower pressure.
The simplest, and very ancient, valve is simply a freely hinged flap which drops to obstruct fluid (gas or liquid) flow in one direction, but is pushed open by flow in the opposite direction. This is called a check valve, as it prevents or "checks" the flow in one direction. ...
Valves are found in virtually every industrial process, including water & sewage processing, mining, power generation, processing of oil, gas & petroleum, food manufacturing, chemical & plastic manufacturing and many other fields. ...
Valves may be operated manually, either by a handle, lever, pedal or wheel. Valves may also be automatic, driven by changes in pressure, temperature, or flow. These changes may act upon a diaphragm or a piston which in turn activates the valve, examples of this type of valve found commonly are safety valves fitted to hot water systems or boilers.
More complex control systems using valves requiring automatic control based on an external input (i.e., regulating flow through a pipe to a changing set point) require an actuator. An actuator will stroke the valve depending on its input and set-up, allowing the valve to be positioned accurately, and allowing control over a variety of requirements." [Valve. Wikipedia]
The example "Design elements - Valves and fittings" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Chemical and Process Engineering solution from the Engineering area of ConceptDraw Solution Park. Read more
Valves and fittings symbols
Valves and fittings symbols, wedge gate valve, valve manifold, tundish, swivel joint, strainer, stop check valve, soldered, solvent, socket, spigot, socket,  spigot, socket weld, sleeve joint, separator, screwed sleeve, screwed joint, screw-down valve, screw-down check valve, relief valve, relief angle valve vacuum, relief angle valve pressure, reel valve, reducing valve, reducer, powered valve, plug valve straight through, plug valve T point, plug valve L point, plug valve 3 way, plug valve, parallel slide valve, open vent, needle valve, lock-shield valve, liquid seal, joint, hydrant, globe valve, gate valve, float operated valve, flanged valve, flanged joint, bolted joint, flame arrester, exhaust silencer, exhaust head, end cap socket and spigot, end cap screwed, end cap quick release, end cap flanged and bolted, end cap fillet welded, end cap butt welded, end cap	screwed and plugged, end cap, electrically insulated, electrically bonded, drain silencer, diaphragm valve, check valve, characterized port valve, butterfly valve, butt weld, bursting disc, bell mouth, ball valve, angle valve, Y strainer, 3-way plug valve,
This example engineering drawing showing the hydraulic directional control valve usage with floating motor and pressure compensated pump is redesigned using the ConceptDraw PRO diagramming and vector drawing software from the Wikimedia Commons file: DCV 17.jpg.
[commons.wikimedia.org/wiki/File:DCV_17.jpg]
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
[creativecommons.org/licenses/by-sa/3.0/deed.en]
"Directional control valves are one of the most fundamental parts in hydraulic machinery as well and pneumatic machinery. They allow fluid flow into different paths from one or more sources. They usually consist of a spool inside a cylinder which is mechanically or electrically controlled. The movement of the spool restricts or permits the flow, thus it controls the fluid flow. ...
The spool (sliding type) consists of lands and grooves.The lands block oil flow through the valve body. The grooves allow oil or gas to flow around the spool and through the valve body. There are two fundamental positions of directional control valve namely normal position where valve returns on removal of actuating force and other is working position which is position of a valve when actuating force is applied. There is another class of valves with 3 or more position that can be spring centered with 2 working position and a normal position. ...
Directional control valves can be classified according to:
(1) number of ports;
(2) number of positions;
(3) actuating methods;
(4) type of spool." [Directional control valve. Wikipedia]
The fluid power equipment drawing example "Directional control valve" is included in the Mechanical Engineering solution from the Engineering area of ConceptDraw Solution Park. Read more
Hydraulic equipment schematic
Hydraulic equipment schematic, spring, variable spring, non-variable spring, reservoir, pressure compensator, hydraulic pump, four-port, flow path, four-port, crossed, flow path, flow path, floating motor, filter, electric linear, solenoid, dot, line, junction, closed path, closed port, callout, box, flow path,