This site uses cookies. By continuing to browse the ConceptDraw site you are agreeing to our Use of Site Cookies.
The vector stencils library "Fluid power equipment" contains 113 symbols of hydraulic and pneumatic equipment including pumps, motors, air compressors, cylinders, meters, gauges, and actuators. Use it to design fluid power and hydraulic control systems.
"Fluid power is the use of fluids under pressure to generate, control, and transmit power. Fluid power is subdivided into hydraulics using a liquid such as mineral oil or water, and pneumatics using a gas such as air or other gases. Compressed-air and water-pressure systems were once used to transmit power from a central source to industrial users over extended geographic areas; fluid power systems today are usually within a single building or mobile machine." [Fluid power. Wikipedia]
The shapes example "Design elements - Fluid power equipment" was created using the ConceptDraw PRO diagramming and vector drawing software extended with the Mechanical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Fluid power symbols
Fluid power symbols, vented reservoir, torque measurement, thermometer, temperature controller, liquid, temperature controller, gas, temperature controller, telescopic, pneumatic, cylinder, single-acting, telescopic, pneumatic, cylinder, double-acting, telescopic, hydraulic, cylinder, single-acting, telescopic, hydraulic, cylinder, double-acting, tachometer, switch, pressure switch, switch, limit switch, single-acting, pneumatic, cylinder, single-acting, intensifier, converting, pneumatic pressure, hydraulic pressure, single-acting, intensifier, converting, pneumatic pressure, single-acting, intensifier, converting, hydraulic pressure, single-acting, hydraulic, cylinder, single-acting actuator, converting, pneumatic pressure, hydraulic pressure, silencer, pneumatic silencer, semi-rotary, actuator, limited angle, rotation, reservoir, pulse counter, pneumatic output signal, pulse counter, electric output signal, pressurized, sealed, hydraulic, reservoir, pressure indicator, pressure, indicator, pressure gauge, pressure, gauge, pneumatic, energy source, pneumatic, drive unit, variable speed, oil tank, manually, drained, separator, valve, filter, manually, drained, separator, valve, lubricator, oil, air, lubricate, liquid temperature controller, liquid level, measuring instrument, hydraulic, energy source, hydraulic, drive unit, variable speed, heat exchanger, apparatus, heating, circulating fluid, heat exchanger, apparatus, cooling, circulating fluid, gas temperature controller, flow, measurement, indicator, flow meter, integrating, flow meter, filter, magnetic element, filter, contamination indicator, filter, energy storage device, accumulator, spring loaded accumulator, energy storage device, accumulator, gas loaded accumulator, energy storage device, accumulator, auxiliary gas bottle, energy storage device, accumulator, energy source, non-electric prime mover, energy source, electric motor, double-acting, pneumatic, cylinder, adjustable, double-acting, pneumatic, cylinder, double-acting, magnetic cylinder, adjustable, double-acting, magnetic cylinder, double-acting, hydraulic, cylinder, adjustable, double-acting, hydraulic, cylinder, double-acting, double-ended, cylinder, differential pressure gauge, pressure, gauge, differential gauge, continuous, intensifier, converting, pneumatic pressure, hydraulic pressure, continuous, actuator, converting, pneumatic pressure, hydraulic pressure, automatically, drained, separator, valve, filter, automatically, drained, separator, valve, air service unit, separator, air service unit, filter, separator, air service unit, filter, air service unit, air receiver, air dryer, air drying, air compressor,
"Directional control valves route the fluid to the desired actuator. They usually consist of a spool inside a cast iron or steel housing. The spool slides to different positions in the housing, and intersecting grooves and channels route the fluid based on the spool's position. The spool has a central (neutral) position maintained with springs; in this position the supply fluid is blocked, or returned to tank. Sliding the spool to one side routes the hydraulic fluid to an actuator and provides a return path from the actuator to tank. When the spool is moved to the opposite direction the supply and return paths are switched. When the spool is allowed to return to neutral (center) position the actuator fluid paths are blocked, locking it in position. Directional control valves are usually designed to be stackable, with one valve for each hydraulic cylinder, and one fluid input supplying all the valves in the stack. Tolerances are very tight in order to handle the high pressure and avoid leaking, spools typically have a clearance with the housing of less than a thousandth of an inch (25 µm). The valve block will be mounted to the machine's frame with a three point pattern to avoid distorting the valve block and jamming the valve's sensitive components. The spool position may be actuated by mechanical levers, hydraulic pilot pressure, or solenoids which push the spool left or right. A seal allows part of the spool to protrude outside the housing, where it is accessible to the actuator. The main valve block is usually a stack of off the shelf directional control valves chosen by flow capacity and performance. Some valves are designed to be proportional (flow rate proportional to valve position), while others may be simply on-off. The control valve is one of the most expensive and sensitive parts of a hydraulic circuit." [Hydraulic machinery. Wikipedia]
The Windows template "Hydraulic 4-ported 3-position valve" for the ConceptDraw PRO diagramming and vector drawing software is included in the Mechanical Engineering solution from the Engineering area of ConceptDraw Solution Park.
www.conceptdraw.com/ solution-park/ engineering-mechanical
Hydraulic directional control valve
Hydraulic directional control valve, four-port, three-position, valve,