This site uses cookies. By continuing to browse the ConceptDraw site you are agreeing to our Use of Site Cookies.

Electrical Symbols — Transistors

A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.

26 libraries of the Electrical Engineering Solution of ConceptDraw PRO make your electrical diagramming simple, efficient, and effective. You can simply and quickly drop the ready-to-use objects from libraries into your document to create the electrical diagram.

Electrical Symbols — MOSFET

The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of transistor used for amplifying or switching electronic signals.
Although the MOSFET is a four-terminal device with source (S), gate (G), drain (D), and body (B) terminals, the body (or substrate) of the MOSFET is often connected to the source terminal, making it a three-terminal device like other field-effect transistors. Because these two terminals are normally connected to each other (short-circuited) internally, only three terminals appear in electrical diagrams. The MOSFET is by far the most common transistor in both digital and analog circuits, though the bipolar junction transistor was at one time much more common.
26 libraries of the Electrical Engineering Solution of ConceptDraw PRO make your electrical diagramming simple, efficient, and effective. You can simply and quickly drop the ready-to-use objects from libraries into your document to create the electrical diagram.

Electrical Symbols — IGFET

There are several types of insulated gate field-effect transistors (IGFETs) in common use.
The early term metal oxide semiconductor field-effect transistor (MOSFET) is still in
use, and MOSFET is usually acceptable as a generic term for IGFETs. The metal oxide, and the insulation in the IGFET, is the insulating material between the gate terminal and the substrate between the source and drain terminals. This insulator must have very low leakage, of course, but another requirement for good performance of the transistor is that the dielectric constant of the material must be very high.

26 libraries of the Electrical Engineering Solution of ConceptDraw PRO make your electrical diagramming simple, efficient, and effective. You can simply and quickly drop the ready-to-use objects from libraries into your document to create the electrical diagram.

CAD Drawing Software for Making Mechanic Diagram and Electrical Diagram Architectural Designs

CAD (Computer-aided design) software is used for improvement the quality of design and the productivity of the designer, for creating the database for manufacturing. Computer-aided design is used in many fields: in mechanical and industrial design, in designing electronic systems and electrical diagrams for architectural design, in automotive, aerospace, shipbuilding industries.
Create an Electrical Diagram
Create an Electrical Diagram

Electrical Symbols — Semiconductor

Semiconductors are crystalline or amorphous solids with distinct electrical characteristics. They are of high resistance — higher than typical resistance materials, but still of much lower resistance than insulators. Their resistance decreases as their temperature increases, which is behavior opposite to that of a metal. Finally, their conducting properties may be altered in useful ways by the deliberate, controlled introduction of impurities into the crystal structure, which lowers its resistance but also permits the creation of semiconductor junctions between differently-doped regions of the extrinsic semiconductor crystal. The behavior of charge carriers which include electrons, ions and electron holes at these junctions is the basis of diodes, transistors and all modern electronics.

26 libraries of the Electrical Engineering Solution of ConceptDraw PRO make your electrical diagramming simple, efficient, and effective. You can simply and quickly drop the ready-to-use objects from libraries into your document to create the electrical diagram.

Venn Diagram Examples for Problem Solving

In the Venn Diagrams solution, there are the pre-made examples that can be always used for making the unique, great looking diagrams, such as the 2-set Venn ones of any needed colour, the 3-set one, the 4-set ones and the 5-set ones. Having the already previously created samples of the Venn diagrams can help any ConceptDraw PRO user make it possible to make the needed drawing within only a few minutes by editing the existing ones.
The vector stencils library "Transistors" contains 30 symbols of transistors drawing electronic schematics and circuit diagrams.
"A transistor is a semiconductor device used to amplify and switch electronic signals and electrical power. It is composed of semiconductor material with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.
The transistor is the fundamental building block of modern electronic devices, and is ubiquitous in modern electronic systems. ...
Transistors are categorized by:
(1) Semiconductor material...: the metalloids germanium ... and silicon ... in amorphous, polycrystalline and monocrystalline form; the compounds gallium arsenide ... and silicon carbide ..., the alloy silicon-germanium ..., the allotrope of carbon graphene ...
(2) Structure: BJT, JFET, IGFET (MOSFET), insulated-gate bipolar transistor, "other types"
(3) Electrical polarity (positive and negative): n–p–n, p–n–p (BJTs); n-channel, p-channel (FETs)
(4) Maximum power rating: low, medium, high
(5) Maximum operating frequency: low, medium, high, radio (RF), microwave frequency...
(6) Application: switch, general purpose, audio, high voltage, super-beta, matched pair
(7) Physical packaging: through-hole metal, through-hole plastic, surface mount, ball grid array, power modules...
(8) Amplification factor..." [Transistor. Wikipedia]
The shapes example "Design elements - Transistors" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
Transistor symbols
Transistor symbols, unijunction FET, P-type channel, unijunction FET, N-type channel, transistor with transverse biased base, PNP, transistor with transverse biased base, NPN, transistor with ohmic connection to the intrinsic region, PNIP, transistor with ohmic connection to the intrinsic region, PNIN, transistor with ohmic connection to the intrinsic region, NPIP, transistor with ohmic connection to the intrinsic region, NPIN, transistor latch, junction, FET, field-effect transistorl, P-type channel, junction, FET, field-effect transistor, P-type channel, junction, FET, field-effect transistor, N-type channel, bipolar transistor, bipolar junction transistor, BJT, PNP, bipolar transistor, bipolar junction transistor, BJT, NPN, Darlington transistor, PNP, Darlington transistor, NPN,
The vector stencils library "Transistors" contains 30 symbols of transistors.
Use these shapes for drawing electronic schematics and circuit diagrams in the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
www.conceptdraw.com/ solution-park/ engineering-electrical
BJT, PNP, env
BJT, PNP, env, bipolar transistor, bipolar junction transistor, BJT, PNP,
BJT, PNP
BJT, PNP, bipolar transistor, bipolar junction transistor, BJT, PNP,
BJT, NPN, env
BJT, NPN, env, bipolar transistor, bipolar junction transistor, BJT, NPN,
BJT, NPN
BJT, NPN, bipolar transistor, bipolar junction transistor, BJT, NPN,
JFET, P, env
JFET, P, env, junction, FET, field-effect transistorl, P-type channel,
JFET, P
JFET, P, junction, FET, field-effect transistor, P-type channel,
JFET, N, env
JFET, N, env, junction, FET, field-effect transistor, N-type channel,
JFET, N
JFET, N, junction, FET, field-effect transistor, N-type channel,
Transverse biased base, PNP, env
Transverse biased base, PNP, env, transistor with transverse biased base, PNP,
Transverse biased base, PNP
Transverse biased base, PNP, transistor with transverse biased base, PNP,
Transverse biased base, NPN, env
Transverse biased base, NPN, env, transistor with transverse biased base, NPN,
Transverse biased base, NPN
Transverse biased base, NPN, transistor with transverse biased base, NPN,
Ohmic, NPIN, env
Ohmic, NPIN, env, transistor with ohmic connection to the intrinsic region, NPIN,
Ohmic, NPIN
Ohmic, NPIN, transistor with ohmic connection to the intrinsic region, NPIN,
Ohmic, NPIP, env
Ohmic, NPIP, env, transistor with ohmic connection to the intrinsic region, NPIP,
Ohmic, NPIP
Ohmic, NPIP, transistor with ohmic connection to the intrinsic region, NPIP,
Ohmic, PNIN, env
Ohmic, PNIN, env, transistor with ohmic connection to the intrinsic region, PNIN,
Ohmic, PNIN
Ohmic, PNIN, transistor with ohmic connection to the intrinsic region, PNIN,
Ohmic, PNIP, env
Ohmic, PNIP, env, transistor with ohmic connection to the intrinsic region, PNIP,
Ohmic, PNIP
Ohmic, PNIP, transistor with ohmic connection to the intrinsic region, PNIP,
Unijunction FET, P, env
Unijunction FET, P, env, unijunction FET, P-type channel,
Unijunction FET, P
Unijunction FET, P, unijunction FET, P-type channel,
Unijunction FET, N, env
Unijunction FET, N, env, unijunction FET, N-type channel,
Unijunction FET, N
Unijunction FET, N, unijunction FET, N-type channel,
Darlington transistor, PNP, env
Darlington transistor, PNP, env, Darlington transistor, PNP,
Darlington transistor, PNP
Darlington transistor, PNP, Darlington transistor, PNP,
Darlington transistor, NPN, env
Darlington transistor, NPN, env, Darlington transistor, NPN,
Darlington transistor, NPN
Darlington transistor, NPN, Darlington transistor, NPN,
Transistor latch, env
Transistor latch, env, transistor latch,
Transistor latch
Transistor latch, transistor latch,

Process Flowchart

ConceptDraw is Professional business process mapping software for making process flow diagram, workflow diagram, general flowcharts and technical illustrations for business documents. It is includes rich examples, templates, process flowchart symbols. ConceptDraw flowchart maker allows you to easier create a process flowchart. Use a variety of drawing tools, smart connectors, flowchart symbols and shape libraries to create flowcharts of complex processes, process flow diagrams, procedures and information exchange.
How To Create a Process Flow Chart (business process modelling techniques)
How To Create a Process Flow Chart (business process modelling techniques)
The vector stencils library "MOSFET" contains 18 symbols of MOSFET (metal–oxide–semiconductor field-effect transistor) elements for drawing electronic circuits diagrams.
"A variety of symbols are used for the MOSFET. The basic design is generally a line for the channel with the source and drain leaving it at right angles and then bending back at right angles into the same direction as the channel. Sometimes three line segments are used for enhancement mode and a solid line for depletion mode. ... Another line is drawn parallel to the channel for the gate.
The "bulk" or "body" connection, if shown, is shown connected to the back of the channel with an arrow indicating PMOS or NMOS. Arrows always point from P to N, so an NMOS (N-channel in P-well or P-substrate) has the arrow pointing in (from the bulk to the channel). If the bulk is connected to the source (as is generally the case with discrete devices) it is sometimes angled to meet up with the source leaving the transistor. If the bulk is not shown (as is often the case in IC design as they are generally common bulk) an inversion symbol is sometimes used to indicate PMOS, alternatively an arrow on the source may be used in the same way as for bipolar transistors (out for nMOS, in for pMOS). ...
For the symbols in which the bulk, or body, terminal is shown, it is here shown internally connected to the source... This is a typical configuration, but by no means the only important configuration. In general, the MOSFET is a four-terminal device, and in integrated circuits many of the MOSFETs share a body connection, not necessarily connected to the source terminals of all the transistors." [MOSFET. Wikipedia]
The symbols example "Design elements - MOSFET" was drawn using the ConceptDraw PRO diagramming and vector drawing software extended with the Electrical Engineering solution from the Engineering area of ConceptDraw Solution Park.
MOSFET symbols
MOSFET symbols, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel, Sedra, MOSFET, metal-oxide semiconductor field-effect transistor, P-type channel, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel, Sedra, MOSFET, metal-oxide semiconductor field-effect transistor, N-type channel,
The vector stencils library "American football positions" contains 38 american football (gridiron) players symbols.
Use it for drawing diagrams of American football positions in the ConceptDraw PRO diagramming and vector drawing software extended with the Football solution from the Sport area of ConceptDraw Solution Park.
Defensive tackle (DT)
Defensive tackle (DT), defensive tackle, DT,
Defensive end (DE)
Defensive end (DE), defensive tackle, DT,
Linebackers (LB)
Linebackers (LB), linebackers, LB,
Cornerback (CB)
Cornerback (CB), cornerback, CB,
Safety (S)
Safety (S), safety, S,
Quarterback (QB)
Quarterback (QB), quarterback, QB,
Running back (RB)
Running back (RB), running back, RB,
Wide receiver (WR)
Wide receiver (WR), wide receiver, WR,
Tight end (TE)
Tight end (TE), tight end, TE,
Center (C)
Center (C), center, C,
Offensive guard (G)
Offensive guard (G), offensive guard, G,
Offensive tackle (T)
Offensive tackle (T), offensive tackle, T,
Kicker (K)
Kicker (K), kicker, K,
Holder (H)
Holder (H), holder, H,
Long snapper (LS)
Long snapper (LS), long snapper, LS,
Punter (P)
Punter (P), punter, P,
Kickoff specialist (KOS)
Kickoff specialist (KOS), kickoff specialist, KOS,
Punt returner (PR)
Punt returner (PR), punt returner, PR,
Kick returner (KR)
 Kick returner (KR), offensive tackle, T,
Defensive tackle (DT)
Defensive tackle (DT), defensive tackle,
Defensive end (DE)
Defensive end (DE), defensive end,
Linebackers (LB)
Linebackers (LB), linebackers,
Cornerback (CB)
Cornerback (CB), cornerback,
Safety (S)
Safety (S), safety,
Quarterback (QB)
Quarterback (QB), quarterback,
Running back (RB)
Running back (RB), running back,
Wide receiver (WR)
Wide receiver (WR), wide receiver,
Tight end (TE)
Tight end (TE), tight end,
Center (C)
Center (C), center,
Guard (G)
Guard (G), guard,
Tackle (T)
Tackle (T), tackle,
Kicker (K)
Kicker (K), kicker,
Holder (H)
Holder (H), holder,
Long snapper (LS)
Long snapper (LS), long snapper,
Punter (P)
Punter (P), punter,
Kickoff specialist (KOS)
Kickoff specialist (KOS), kickoff specialist,
Punt returner (PR)
Punt returner (PR), punt returner,
Kick returner (KR)
Kick returner (KR), kick returner,
Used Solutions

Personal area (PAN) networks. Computer and Network Examples

A Personal area network (PAN) is a computer network that is used for data transmission between different personal devices (computers, telephones, digital devices, etc.) and for connecting to the higher level network and Internet. PANs can be wired with computer buses (USB and FireWire). A wireless personal area network (WPAN) can be made using the network technologies such as Bluetooth, IrDa, UWB, Z-Wave, ZigBee, Body Area Network. A personal area network handles the interconnection of IT devices at the surrounding of a single user. Generally, PAN contains from following such appliances: cordless mice and keyboards, cordless phone, Bluetooth handsets.
This example was created in ConceptDraw PRO using the Computer and Networks Area of ConceptDraw Solution Park and shows the Personal area network.
"A piping and instrumentation diagram/ drawing (P&ID) is a diagram in the process industry which shows the piping of the process flow together with the installed equipment and instrumentation. ...
P&IDs play a significant role in the maintenance and modification of the process that it describes. It is critical to demonstrate the physical sequence of equipment and systems, as well as how these systems connect. During the design stage, the diagram also provides the basis for the development of system control schemes, allowing for further safety and operational investigations, such as a Hazard Analysis and Operability Study...
For processing facilities, it is a pictorial representation of:
Key piping and instrument details,
Control and shutdown schemes,
Safety and regulatory requirements,
Basic start up and operational information." [Piping and instrumentation diagram. Wikipedia]
The piping and instrumentation diagram template for the ConceptDraw PRO diagramming and vector drawing software is included in the Chemical and Process Engineering solution from the Engineering area of ConceptDraw Solution Park.
Piping and instrumentation diagram / drawing (P&ID)
Piping and instrumentation diagram / drawing (P&ID), reducing valve, off-sheet, pipelines, indicator, discrete instrument, diaphragm valve, compressor, closed tank, branch fitting,

Sales Process Flowchart Symbols

The most easier way of creating the visually engaging and informative Sales Process Flowchart is to create the new ConceptDraw document and to use the predesigned vector symbols offered in 6 libraries of the Sales Flowchart Solution. There are more than six types of sales process flow diagrams, ConceptDraw PRO software is flowchart maker which include six collections of extended flowchart symbols for effective diagramming. There are main collections of color coded flowchart symbols: Sales Department, Sales Steps, Sales Workflow, Sales Symbols and special set of Sales Arrows and Sales Flowchart.